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Benford’s Law
Benford’s Law A sequence {xn} is said to be Benford
distributed if the probability of having first digit d is
log10(1 + 1

d) for any d = 1, 2, . . . , 9.

Mathematical Examples an, n!, nn, Fn , p(n) (partition
function) are Benford distributed (Diaconis (1977) , Hill
(1995)).
Real World Examples Populations of US cities, areas of
countries, physical constants, file sizes in Linux file system
and numbers in US tax returns are approximately Benford
distributed.

Uniform Distribution Modulo 1

Definition {xn} is said to be uniformly distributed modulo 1 if

lim
N→∞

1

N
#{1 ≤ n ≤ N : xn mod 1 ∈ [a, b]} = b− a

for any 0 ≤ a ≤ b ≤ 1.
Examples nα, n log(n) ,n!, αnk, where α 6∈ Q, are uniformly
distributed modulo 1.
Connection with Benford Distribution A sequence {an} is
Benford-distributed if {log(an)} is uniformly distributed
modulo 1. ( Kuipers and Niederreiter (2006) )
Discrepancy The discrepancy of the sequence
{xn}, n = 1 . . . N is defined to be

DN = sup
0≤a≤b≤1

∣∣∣∣ 1

N
#{1 ≤ n ≤ N : xn mod 1 ∈ [a, b]} − (b− a)
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Main Results and Conjectures
Global Randomness

Definition (Benford Deviation)
We define the Benford deviation ∆(N) of a sequence {an} as

∆(N) = ∆(N, {an}) =

9∑
i=1

|Pi(N)− P̂i|,

where Pi(N) is the observed frequency of digit i among the
first N terms of sequence {an} and P̂i = log10(1 + 1

i) is the
Benford frequency.

Theorem (Benford Deviation and Discrepancy)
The Benford deviation of a sequence {an} is bounded by the
discrepancy of the sequence {log10 an}:

∆(N, {an})� DN({log10 an}).
Corollary (Upper Bound for Geometric Sequences)
If an = an, where log10 a is an algebraic irrational number, then
the Benford deviation satisfies

∆(N)� logN

N
.

Conjecture (Lower Bound for Geometric Sequences)
If an = an, then

∆(N) 6= o

(
logN

N

)
.

Local Randomness
Theorem (First-digit Coupon Collector Waiting Times)

(i) If an = an(1 + o(1)) where log10 a /∈ Q, the sequence has
bounded first-digit coupon collector waiting times.

(ii) If an+1

an
= nk(1 + o(1)) for some k > 0, the sequence has

unbounded first-digit coupon collector waiting times.

Examples:
{2n} and {Fn} have bounded waiting times.
{n!}, {nn}, and {p(n)}, where p is the partition function,
have unbounded waiting times.

Theorem (Non-Periodicity)
If an = an(1 + o(1)), where log10 a /∈ Q, the leading digit of the
sequence is not periodic.

Definition (Local Benford Distribution)
A sequence is called locally Benford-distributed to degree k if
the leading digits of (an+1, . . . , an+k) have the same asymptotic
distribution as k independent Benford distributions.

Conjecture (Local Randomness Conjecture)

If an = ap(n), where log10 a /∈ Q and p(n) is a polynomial of
degree d, then an is locally Benford distributed to any degree
k ≤ d, but not to degree k + 1.

Further Observations
Fractal Behavior

For sequences an = an, where log10 a /∈ Q, the Benford
deviation ∆(N) shows a fractal-type behavior. The graph
above shows ∆(N) for the case 2n (red plot) and Fn (blue plot)

Waiting Time Distribution

For sequences an = an, where log10 a /∈ Q, the distribution of
coupon waiting times is very different from that of random
simulations of Benford sequences. The graph above shows
this distribution for the sequences Fn (in blue), 2n (in red), and
a random simulation of Benford sequences (in pastel).

The Coupon Collector Problem
Coupon Collector Problem Given n coupons, each
equally likely, how many coupons does one have to draw
with replacement in order to obtain a complete collection
of coupons (Dawkins, 1991; Schelling, 1954)?

Coupon Collector Waiting Times The sequence W1, W2,
. . . where W1 is the number of draws needed to obtain a
complete collection of coupons, W2 the number of additional
draws needed to obtain a second complete collection of
coupons, and so on.
Expected Waiting Time In the classical coupon collector
problem, the expected waiting time is

E(W1) = n

n∑
k=1

1

k
∼ n log n

as n→∞.
First-digit Coupon Collector Waiting Times The coupon
collector waiting times in the case when the coupons are
digits 1, 2, . . . , 9, drawn according to the Benford distribution.
The distribution of the first-digit coupon collector waiting
times is shown in the above histogram.
Coupon Collector Randomness Test A randomness test
for a sequence of digits that compares the actual distribution
of first-digit coupon waiting times with the theoretical one
(Greenwood, 1955; Knuth, 1997).
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